Qual matéria está procurando ?

Matemática

Matemática

Potenciação

A potenciação é uma operação matemática que representa a multiplicação sucessiva de um número por ele mesmo. Ao multiplicar o 3 por ele mesmo 4 vezes, isso pode ser representado pela potência 3 elevada a 4: 34.

 Essa operação possui propriedades importantes que facilitam o cálculo das potências. Assim como a multiplicação possui a divisão como operação inversa, a potenciação possui a radiciação como operação inversa.

Cada elemento da potenciação recebe um nome específico:

an = b

a → base

n→ expoente

b→ potência

Leia também: Potenciação e radiciação de frações

Como ler uma potência?

Potenciação é uma operação matemática.

Saber ler uma potência é uma tarefa importante. A leitura é sempre feita começando pelo número que está na base elevado ao número que está no expoente, como nos exemplos a seguir:

Exemplos:

a) 4³ → Quatro elevado a três, ou quatro elevado à terceira potência, ou quatro elevado ao cubo.

b) 34 → Três elevado a quatro, ou três elevado à quarta potência.

c) (-2)¹ → Menos dois elevado a um, ou menos dois elevado à primeira potência.

d) 8² → Oito elevado a dois, ou oito elevado à segunda potência, ou oito elevado ao quadrado.

As potências de expoente 2 podem ser chamadas também de potências elevadas ao quadrado, e as potências de grau 3 podem ser chamadas de potências elevadas ao cubo, como nos exemplos anteriores.

Cálculo de potências

Para encontrar o valor de uma potência, precisamos realizar as multiplicações como nos exemplos a seguir:

a) 3²= 3 · 3 = 9

b) 5³= 5·5·5 = 125

c) 106 = 10 · 10 · 10 · 10 · 10 · 10 = 1 000 000

Tipos de potência

Existem alguns tipos específicos de potência.

1º caso – Quando a base for diferente de zero, podemos afirmar que todo número elevado a zero é igual a 1.

Exemplos:

a) 100=1

b) 12930=1

c) (-32)0=1

d) 80=1

2º caso - Todo número elevado a 1 é ele mesmo.

Exemplos:

a) 9¹ = 9

b) 12¹ = 12

c) (-213)¹= - 213

d) 0¹ = 0

3º caso - 1 elevado a qualquer potência é igual a 1.

Exemplos:

a) 1²¹ = 1

b) 1³ = 1

c) 1500=1

4º caso - Base de uma potenciação negativa

Quando a base é negativa, separamos em dois casos: quando o expoente for ímpar, a potência será negativa; quando o expoente for par, a resposta será positiva.

Exemplos:

a) (-2)³ = (-2) · (-2) · (-2) = - 8 → Note que o expoente 3 é ímpar, logo a potência é negativa.

b) (-2)4= (-2) · (-2) · (-2) · (-2) = 16 → Note que o expoente 4 é par, por isso a potência é positiva.

Leia também: Potências com expoente negativo

Potência com expoente negativo

Para calcular a potência com expoente negativo, escrevemos o inverso da base e trocamos o sinal do expoente.

Propriedades da potenciação

Além dos tipos de potenciação mostrados, a potenciação possui propriedades importantes para facilitar o cálculo de potência.

1ª propriedade – Multiplicação de potências de mesma base

Ao realizarmos uma multiplicação de potências de mesma base, conservamos a base e somamos os expoentes.

Exemplos:

a) 24· 23 = 24+3=27

b) 5³ · 55 · 52= 53+5+2 = 510

2ª propriedadeDivisão de potências de mesmo base

Quando encontramos uma divisão de potência de mesma base, conservamos a base e subtraímos os expoentes.

Exemplos:

a) 37 : 35 = 37-5 = 32

b) 23 : 26 = 23-6 = 2-3

3ª propriedade – Potência de potência

Ao calcular a potência de uma potência, podemos conservar a base e multiplicar os expoentes.

Exemplos:

a) (5²)³ = 52·3 = 56

b) (35)4 = 35·4 = 3 20

4ª propriedade – Potência de um produto

Quando há uma multiplicação de dois números elevada a um expoente, podemos elevar cada um desses números ao expoente.

Exemplos:

a)(5 · 7)3 = 53 · 73

b)( 6·12)8 = 68 · 128

5ª propriedade – Potência do quociente

Para calcular potências de um quociente ou até mesmo de uma fração, o modo de realizar é muito parecido com a quarta propriedade. Se há uma divisão elevada a um expoente, podemos calcular a potência do dividendo e do divisor separadamente.

a) (8:5)³ = 8³ : 5³

 

 

Potenciação e radiciação

A radiciação é a operação inversa da potenciação, ou seja, ela desfaz o que foi feito pela potência. Por exemplo, ao calcularmos a raiz quadrada de 9, estamos procurando o número elevado ao quadrado que resulta em 3. Então, para entender uma delas, é fundamental que se domine a outra. Em equações, também é bastante comum o uso da radiciação para eliminar uma potência de uma incógnita, e também o contrário, ou seja, usarmos potenciação para eliminar a raiz quadrada de uma incógnita.

Exemplo

- Calcule o valor de x, sabendo que x³ = 8.

Para calcular o valor de x, é necessário realizar a operação inversa da potenciação, ou seja, a radiciação. Na realidade, estamos buscando qual é o número que, ao ser elevado ao cubo, tem como resultado o número 8.

Essa relação entre a radiciação e a potenciação torna fundamental dominar as regras de potenciação para avançar o aprendizado sobre a radiciação.

Leia também: Como calcular raízes usando potências?

Exercícios resolvidos

1) (PUC-RIO) O maior número abaixo é:

a) 331

b)810

c)168

d)816

e)2434

Resolução:

Realizar a comparação calculando cada um deles seria uma tarefa difícil, então vamos simplificar as alternativas,

a) 331 já está simplificada

b) 8 = 2³ → (2³)10 = 230

c) 16 = 24 → (24)8 = 232

d) 81 = 34 → (34)6 = 324

e) 243=35 → (35)4 = 320

Logo, a maior das potências é a letra A.

2) A simplificação da expressão [310: (35. 3)2]- é igual a:

a)3-4

b)34

c)30

d)3²

e)3-2

Resolução:

[310: (35. 3)2]-2

[310: (36)2]-2

[310: 312]-2

[3-2]-2

34

Letra B.   

Por Raul Rodrigues de Oliveira

Você pode se interessar também

Matemática

Cálculo de raízes

Matemática

Logaritmos

Matemática

Multiplicação de monômios

Matemática

Polinômios

Últimos artigos

Tratado de Tordesilhas

Tratado de Tordesilhas foi assinado entre Portugal e Castela (Espanha) e determinava a divisão das terras que poderiam ser encontradas durante as Grandes Navegações.

Fruta

Fruta é um termo sem valor científico usado para se referir a frutos e frutos acessórios que possuem suco, apresentam sabor adocicado e aroma característico.

Coelho

O coelho é um animal pertencente à família Leporidae, a mesma das lebres. Coelhos destacam-se por possuírem orelhas e pernas grandes, além do corpo recoberto por pelos.

Medusa

Medusa era uma górgona, isto é, um monstro que possuía serpentes no lugar dos cabelos, e era conhecida por transformar em pedra todos que olhavam para o seu rosto.