Qual matéria está procurando ?

Matemática

Matemática

Raiz Quadrada

A raiz quadrada é um tipo de operação matemática, assim como a adição, multiplicação, entre outras. Ela é a operação inversa da potência de dois, ou seja, calcular a raiz quadrada de um número a é procurar o número elevado a 2 que resulta em a.

Além disso, essa raiz pode ser exata ou não. Quando ela é exata, o número é chamado de quadrado perfeito. Na geometria, ela é útil para determinamos o lado de quadrados.

Leia também: Potenciação e radiciação de frações – como resolver?

Radiciação

Na raiz quadrada, o índice da raiz é 2. Ela é a mais comum entre as radiciações, mas também é possível calcular raiz cúbica, raiz quarta, entre outras raízes.

A radiciação é o inverso da potenciação. Por exemplo, se eu pedir a raiz quinta de um número n, estamos procurando qual é o número que, multiplicado por ele 5 vezes, resulta em n.

Elementos da radiciação

A operação é representada por:

  radical

n→ índice

a→ radicando

b→ raiz

Como vamos fazer o estudo da raiz quadrada, o índice será sempre igual a 2. Em uma radiciação, quando o índice é 2, não precisamos escrevê-lo.

Calculando a raiz quadrada

O cálculo da raiz quadrada pode ser feito de cabeça por meio de tabuada quando conhecemos a raiz. Quando o número é muito grande, uma alternativa é realizar a fatoração desse número. Calcular a raiz quadrada de a é encontrar o número b que, quando multiplicamos b .b, resulta em a.

  • Exemplos

Tipos de raiz quadrada

Uma raiz quadrada pode ser exata ou não. Para que a gente consiga classificar, precisamos levar em consideração se a resposta é um número racional ou um número irracional.

  • Raiz quadrada exata

Uma raiz quadrada é exata quando resulta em um número racional, como uma fração, um número inteiro, um número decimal, desde que, ao multiplicar esse número por ele mesmo, encontremos exatamente o radicando.

  • Exemplos

Quando o número para o qual desejamos calcular a raiz quadrada exata é muito grande, o ideal é recorrer à fatoração desse número. Como estamos calculando a raiz quadrada, vamos agrupar essa fatoração como potências de dois conforme o exemplo a seguir.

  • Exemplo

Calcule a raiz quadrada de 3600.

Agora que realizamos a fatoração, vamos calcular a raiz de 3600 na forma fatorada.

Podemos perceber que a raiz de um número ao quadrado é igual ao próprio número. Por exemplo, sabemos que 3 ao quadrado é 9 e que a raiz de 9 é igual ao próprio 3. Então podemos simplificar o expoente 2 com o radical.

Na raiz exata, quando a resposta é um número natural, ele é conhecido como quadrado perfeito. Veja todos os quadrados perfeitos de 0 até 100.

Os quadrados perfeitos de 0 até 100 são 0, 1, 4, 9, 16, 25, 36, 49, 64, 81 e 100.

  • Raiz quadrada não exata

Existem casos em que a raiz não é exata. Quando isso acontece, podemos encontrar a melhor aproximação possível para a raiz desse número, já que a resposta é um número irracional. Para essa aproximação, vamos utilizar os quadrados perfeitos que já conhecemos.

  • Exemplo

Para encontrar a raiz de 40, vamos compará-la com as raízes exatas que conhecemos. Analisando os quadrados perfeitos, sabemos que 40 está entre 36 e 49.

Agora vamos encontrar o número decimal entre 6 e 7 que está mais próximo de 40.

6,1² = 37,21

6,2²= 38,44

6,3²=39,69

6,4²=40,96 → passou de 40, então vamos usar o número decimal anterior para a aproximação.

Perceba que 6,3² não dá exatamente 40, mas chega próximo, por isso essa raiz quadrada não é exata.

Veja também: Cálculo de raízes – formas de resolver

Interpretação geométrica da raiz quadrada

Alguns livros de história da matemática dizem que a raiz quadrada surgiu para resolver problemas de áreas de quadrado. Suponha que queiramos achar o lado de um terreno que tem formato de um quadrado e que sua área seja igual a 169 m².

Como a área do quadrado é calculada por l², então calcular a raiz de 169, geometricamente, é encontrar o lado do quadrado que possui essa área.

O lado do quadrado é de 13 metros.

A raiz quadrada é um tipo específico de radiciação.

Exercícios resolvidos

Questão 1 - Qual é a melhor aproximação para a raiz quadrada de 72?

A) 8,1

B) 8,2

C) 8,3

D) 8,4

E) 8,5

Resolução

Alternativa D.

Sabemos que 72 está entre os quadrados perfeitos 64 e 81, então temos que:

8,1²= 65,61

8,2²= 67,24

8,3²= 68,89

8,4²= 70,56

8,5²= 72,25 → passou, então a melhor aproximação é a anterior, 8,4.

Questão 2 - Qual das raízes abaixo não é exata?

Resolução

Alternativa C.

a) Possui raiz exata igual a 11, pois 11² =121.

b) Possui raiz exata igual a 1,3, pois 1,3² = 1,69.

c) Não possui raiz exata

d) Possui raiz exata, pois o numerador 1²=1 e o denominador 2²=4, logo a raiz dessa fração é igual a ½.

e) Possui raiz exata igual a 1.    

Por Raul Rodrigues de Oliveira

Você pode se interessar também

Matemática

Conjuntos Numéricos

Matemática

Cálculo de raízes

Matemática

Números Negativos

Matemática

Números Racionais

Últimos artigos

Epiglote

Epiglote é uma estrutura cartilaginosa que atua como uma válvula. Essa válvula se fecha durante o ato de engolir, impedindo que o alimento entre na via respiratória.

Héstia

Héstia era uma divindade presente nos mitos gregos, considerada a personificação da lareira. Era a deusa do lar, da hospitalidade e da vida doméstica.

Papiro

Papiro é uma planta aquática que era encontrada ao longo do rio Nilo e utilizada para a fabricação de uma superfície para registro de textos.

Hades

Hades era um dos deuses mais tradicionais de toda a mitologia grega, conhecido como senhor do submundo, local para onde iam as almas dos mortos para os gregos.