Qual matéria está procurando ?

Matemática

Matemática

Raiz Quadrada

A raiz quadrada é um tipo de operação matemática, assim como a adição, multiplicação, entre outras. Ela é a operação inversa da potência de dois, ou seja, calcular a raiz quadrada de um número a é procurar o número elevado a 2 que resulta em a.

Além disso, essa raiz pode ser exata ou não. Quando ela é exata, o número é chamado de quadrado perfeito. Na geometria, ela é útil para determinamos o lado de quadrados.

Leia também: Potenciação e radiciação de frações – como resolver?

Radiciação

Na raiz quadrada, o índice da raiz é 2. Ela é a mais comum entre as radiciações, mas também é possível calcular raiz cúbica, raiz quarta, entre outras raízes.

A radiciação é o inverso da potenciação. Por exemplo, se eu pedir a raiz quinta de um número n, estamos procurando qual é o número que, multiplicado por ele 5 vezes, resulta em n.

Elementos da radiciação

A operação é representada por:

  radical

n→ índice

a→ radicando

b→ raiz

Como vamos fazer o estudo da raiz quadrada, o índice será sempre igual a 2. Em uma radiciação, quando o índice é 2, não precisamos escrevê-lo.

Calculando a raiz quadrada

O cálculo da raiz quadrada pode ser feito de cabeça por meio de tabuada quando conhecemos a raiz. Quando o número é muito grande, uma alternativa é realizar a fatoração desse número. Calcular a raiz quadrada de a é encontrar o número b que, quando multiplicamos b .b, resulta em a.

  • Exemplos

Tipos de raiz quadrada

Uma raiz quadrada pode ser exata ou não. Para que a gente consiga classificar, precisamos levar em consideração se a resposta é um número racional ou um número irracional.

  • Raiz quadrada exata

Uma raiz quadrada é exata quando resulta em um número racional, como uma fração, um número inteiro, um número decimal, desde que, ao multiplicar esse número por ele mesmo, encontremos exatamente o radicando.

  • Exemplos

Quando o número para o qual desejamos calcular a raiz quadrada exata é muito grande, o ideal é recorrer à fatoração desse número. Como estamos calculando a raiz quadrada, vamos agrupar essa fatoração como potências de dois conforme o exemplo a seguir.

  • Exemplo

Calcule a raiz quadrada de 3600.

Agora que realizamos a fatoração, vamos calcular a raiz de 3600 na forma fatorada.

Podemos perceber que a raiz de um número ao quadrado é igual ao próprio número. Por exemplo, sabemos que 3 ao quadrado é 9 e que a raiz de 9 é igual ao próprio 3. Então podemos simplificar o expoente 2 com o radical.

Na raiz exata, quando a resposta é um número natural, ele é conhecido como quadrado perfeito. Veja todos os quadrados perfeitos de 0 até 100.

Os quadrados perfeitos de 0 até 100 são 0, 1, 4, 9, 16, 25, 36, 49, 64, 81 e 100.

  • Raiz quadrada não exata

Existem casos em que a raiz não é exata. Quando isso acontece, podemos encontrar a melhor aproximação possível para a raiz desse número, já que a resposta é um número irracional. Para essa aproximação, vamos utilizar os quadrados perfeitos que já conhecemos.

  • Exemplo

Para encontrar a raiz de 40, vamos compará-la com as raízes exatas que conhecemos. Analisando os quadrados perfeitos, sabemos que 40 está entre 36 e 49.

Agora vamos encontrar o número decimal entre 6 e 7 que está mais próximo de 40.

6,1² = 37,21

6,2²= 38,44

6,3²=39,69

6,4²=40,96 → passou de 40, então vamos usar o número decimal anterior para a aproximação.

Perceba que 6,3² não dá exatamente 40, mas chega próximo, por isso essa raiz quadrada não é exata.

Veja também: Cálculo de raízes – formas de resolver

Interpretação geométrica da raiz quadrada

Alguns livros de história da matemática dizem que a raiz quadrada surgiu para resolver problemas de áreas de quadrado. Suponha que queiramos achar o lado de um terreno que tem formato de um quadrado e que sua área seja igual a 169 m².

Como a área do quadrado é calculada por l², então calcular a raiz de 169, geometricamente, é encontrar o lado do quadrado que possui essa área.

O lado do quadrado é de 13 metros.

A raiz quadrada é um tipo específico de radiciação.

Exercícios resolvidos

Questão 1 - Qual é a melhor aproximação para a raiz quadrada de 72?

A) 8,1

B) 8,2

C) 8,3

D) 8,4

E) 8,5

Resolução

Alternativa D.

Sabemos que 72 está entre os quadrados perfeitos 64 e 81, então temos que:

8,1²= 65,61

8,2²= 67,24

8,3²= 68,89

8,4²= 70,56

8,5²= 72,25 → passou, então a melhor aproximação é a anterior, 8,4.

Questão 2 - Qual das raízes abaixo não é exata?

Resolução

Alternativa C.

a) Possui raiz exata igual a 11, pois 11² =121.

b) Possui raiz exata igual a 1,3, pois 1,3² = 1,69.

c) Não possui raiz exata

d) Possui raiz exata, pois o numerador 1²=1 e o denominador 2²=4, logo a raiz dessa fração é igual a ½.

e) Possui raiz exata igual a 1.    

Por Raul Rodrigues de Oliveira

Você pode se interessar também

Matemática

Conjuntos Numéricos

Matemática

Cálculo de raízes

Matemática

Números Negativos

Matemática

Números Racionais

Últimos artigos

Animais herbívoros

Os animais herbívoros se alimentam de algas e/ou vegetais e, portanto, ocupam sempre o nível de consumidores primários na cadeia alimentar.

Realismo no Brasil

Realismo foi um estilo de época do século XIX. No Brasil, Machado de Assis é seu maior representante.

Código de Hamurábi

Código de Hamurábi — código de leis tradicionais na Mesopotâmia — foi compilado por Hamurábi, rei da Babilônia, no século XVIII a.C.

Idade Moderna

Idade Moderna foi um dos períodos da História, iniciando-se em 1453 e finalizando-se em 1789. Foi o período dos regimes absolutistas e do surgimento do capitalismo.