Qual matéria está procurando ?

Matemática

Matemática

Classificação dos triângulos

Os triângulos são polígonos que possuem três lados, assim também apresentam três ângulos internos, três ângulos externos e três vértices. No entanto, não são quaisquer três segmentos de reta que determinam um triângulo, ou seja, o tamanho dos lados tem influência em sua existência.

Podemos classificar os triângulos de acordo com o tamanho de seus lados, podendo ser escalenos, isósceles ou equiláteros. E, em relação a seus ângulos internos, podem ser chamados de triângulos retângulos, acutângulos ou obtusângulos.    

Diferentes tipos de triângulos.
Diferentes tipos de triângulos.

Leia também: Conhecendo os polígonos

Elementos de um triângulo

Antes de classificarmos um triângulo, vamos entender os elementos que o formam. Em todo triângulo teremos três lados, estes são formados por segmentos de reta. Teremos também três vértices, em que os segmentos de reta encontram-se em ângulos internos e externos. Veja na figura:

Os lados, como dito, serão determinados por segmentos de reta, e vamos representá-los da seguinte maneira:

https://latex.codecogs.com/gif.latex?%5Cdpi%7B120%7D%20%5Coverline%7BAB%7D%2C%20%5Coverline%7BBC%7D%2C%5Coverline%7BAC%7D

Os vértices do triângulo são pontos em que os lados se encontram, bem como usados para dar nome ao triângulo. Vamos representá-los assim:

Os ângulos internos são as medidas entre os lados do triângulo, logo, teremos três ângulos internos. Estes são representados desta forma:

Devemos colocar um acento circunflexo (ou um “chapéu”) no vértice em que se encontra o ângulo.        

Os ângulos externos são ângulos adjacentes suplementares aos ângulos internos, e aqui são representados pelas letras gregas α (alfa) β (beta) e γ (gama). Veja melhor na imagem:

Saiba mais: Soma dos ângulos internos de um triângulo

Condição de existência dos triângulos

Imagine 3 segmentos de reta medindo respectivamente 10 cm, 7 cm e 6 cm. Será possível construir um triângulo com essas medidas? Observe:

Nós temos um exemplo que mostra que não são quaisquer 3 segmentos que formam um triângulo. Existe uma condição que tem de ser satisfeita.

A medida de cada lado do triângulo deve ser menor que a soma da medida dos outros dois lados e, ao mesmo tempo, maior que o módulo da diferença entre elas.  

As medidas l1, l2 e l3 são os tamanhos dos lados do triângulo. Essa relação também é conhecida como desigualdade triangular.

- Exemplo.

É possível construir um triângulo com os lados medindo 12 cm, 9 cm e 4 cm?

Solução:

Tomando:

Perceba que esses valores satisfazem a fórmula da condição de existência. Substituindo os valores, temos:

Como 8 < 9 < 16, então é possível construir um triângulo com essas medidas de lado.

Se quiser saber mais sobre o tema, leia nosso texto: Condição de existência de um triângulo.

Classificação quanto aos lados

Em relação ao tamanho dos lados de um triângulo, podemos classificá-los em três: triângulo escaleno, triângulo isósceles e triângulo equilátero.

  • Triângulo escaleno

Dizemos que um triângulo é escaleno quando todos os lados apresentarem medidas diferentes.

Assim, podemos dizer que todos ângulos internos também são diferentes entre si.

  • Triângulo isósceles

Dizemos que um triângulo é isósceles quando dois de seus lados são congruentes, ou seja, apresentam a mesma medida, e o terceiro lado é diferente.

No triângulo isósceles, temos também dois ângulos iguais, que são chamados de ângulos da base, e o outro ângulo diferente.

  • Triângulo equilátero

Dizemos que um triângulo é equilátero quando todos os seus lados são iguais, isto é, todos os lados têm a mesma medida.

No triângulo equilátero, todos os ângulos são congruentes, ou seja, todos os ângulos são iguais. Além disso, uma propriedade muito importante do triângulo equilátero é que todos os seus ângulos medem 60°.

Veja também: Semelhança de triângulos: aprenda os casos

Classificação quanto aos ângulos

Em relação à medida dos ângulos, também podemos classificar os triângulos em três tipos: triângulo retângulo, triângulo acutângulo e triângulo obtusângulo.

  • Triângulo retângulo

Quando um triângulo apresentar um ângulo reto, ele será chamado de triângulo retângulo. O lado oposto ao ângulo reto recebe o nome de hipotenusa, e os outros dois lados são chamados de catetos. Além disso, é para esse triângulo que vale o teorema de Pitágoras.

Do triângulo retângulo anterior, podemos dizer:

m (Â) = 90º → ângulo reto
BC → hipotenusa
AB e AC   → catetos

  • Triângulo acutângulo

Um triângulo será dito acutângulo quando todos os seus ângulos internos forem menores que 90°.

Do triângulo acutângulo, temos que:

  • Triângulo obtusângulo

O triângulo é obtusângulo quando apresenta um ângulo interno maior que 90°.

Do triângulo obtusângulo, segue que:

Saiba mais: Perímetro do triângulo equilátero: aprenda a fórmula

Exercícios resolvidos

Questão 1. Nas figuras seguintes, classifique os triângulos em relação aos lados e ângulos.

a)

R: Retângulo e escaleno

b)

R: Acutângulo e equilátero

c)

R: Obtusângulo e escaleno

d)

R: Acutângulo e escaleno

e)

R: Acutângulo e isósceles

Por Robson Luiz

Você pode se interessar também

Matemática

Razões trigonométricas

Matemática

Área de um losango

Matemática

Conhecendo os Polígonos

Matemática

Unidades de Área

Últimos artigos

Lobisomem

O lobisomem é um homem amaldiçoado com a condição de se transformar em um ser violento, que é metade homem e metade lobo, todas as noites de lua cheia.

Sarampo

O sarampo é uma virose que pode desencadear complicações e até mesmo a morte. Causa febre, manchas no corpo e mal-estar.

Bicho-preguiça

Bicho-preguiça, também conhecido apenas por preguiça, é um animal vertebrado, mamífero, pertence à superordem Xenarthra, e habita desde a América Central até a América do Sul.

USMCA

A nova atualização do acordo trilateral entre Estados Unidos, México e Canadá foi chamada de USMCA. Esse acordo representa uma modernização da zona de livre comércio.