Qual matéria está procurando ?

Matemática

Matemática

Seno, cosseno e tangente

Clique e entenda os conceitos de seno, cosseno e tangente e conheça alguns exemplos de uso dessas razões trigonométricas em triângulos retângulos.

Seno, cosseno e tangente são razões que relacionam as medidas de lados com as medidas de ângulos de um triângulo retângulo. Essas razões são conhecidas como relações trigonométricas. Para defini-las, é importante conhecer alguns elementos do triângulo retângulo, que serão discutidos a seguir:

Elementos do triângulo retângulo

Um triângulo retângulo é um polígono de três lados que possui um ângulo interno reto. É impossível que um triângulo possua dois ou mais ângulos iguais ou superiores a 90°.


Triângulo com um ângulo medindo 90°

Os lados de um triângulo retângulo recebem nomes especiais de acordo com a sua posição. O lado oposto ao ângulo reto é chamado de hipotenusa. Os outros dois lados são chamados de catetos.

Para as razões trigonométricas, é importante destacar que um cateto pode ser oposto ou adjacente dependendo do ângulo que estiver sendo analisado. Por exemplo, no triângulo acima, o lado AB é a hipotenusa, e o lado BC é cateto oposto ao ângulo α e cateto adjacente ao ângulo β. Já o lado AC é cateto adjacente ao ângulo α e cateto oposto ao ângulo β.

Razão seno

Em dado triângulo retângulo ABC, dizemos que o seno do ângulo α é igual à medida do cateto oposto ao ângulo α, dividido pela medida da hipotenusa do triângulo. Em outras palavras:

Senα = Cateto oposto a α
          hipotenusa

O triângulo a seguir, por exemplo, possui medidas reais de um triângulo retângulo.

 

Note que α = 30°, assim,

Sen30° = 1
              2

Essa medida é válida para todo triângulo que possui um ângulo de 30°, assim, independentemente das medidas de seus lados, o cateto oposto ao ângulo de 30° sempre terá metade do comprimento da hipotenusa.

Sabendo disso, quando um triângulo retângulo possuir um ângulo de 30°, será possível determinar a medida de um de seus lados, hipotenusa ou cateto oposto ao ângulo de 30°, sabendo apenas a medida do outro. No triângulo a seguir, por exemplo, podemos determinar a medida de x.

Observe que o cateto oposto ao ângulo de 30° mede 10 cm e que a hipotenusa desse triângulo é desconhecida. Sabendo que o sen30° = 1/2, podemos fazer:

sen30° = 10
              x

1 = 10
2     x 

x = 2·10

x = 20 cm.

Vale destacar que o seno (o cosseno e a tangente) de um ângulo só variam de acordo com a variação do ângulo, isto é, independentemente do comprimento dos lados do triângulo, sempre que o seno observado for o de 30°, seu valor será 1/2.

Razão cosseno

A rasão cosseno é semelhante à razão seno, entretanto, é definida como a divisão entre o cateto adjacente a um ângulo e a hipotenusa do triângulo retângulo. Sendo assim, o cosseno do ângulo α é:

Cosα = Cateto adjacente a α
           Hipotenusa

Essa razão pode ser usada para os mesmos fins que a razão seno: encontrar a medida do cateto oposto ou da hipotenusa com a medida de um desses dois lados. Para tanto, é necessário conhecer os valores do cosseno do ângulo em questão.

Razão tangente

A razão tangente é dada pela divisão entre o cateto oposto ao ângulo α pelo cateto adjacente ao ângulo α. Em outras palavras:

tgα =    Cateto oposto a α     
        Cateto adjacente a α

Vale lembrar que, independentemente das dimensões do triângulo, os valores de seno, cosseno e tangente de um ângulo só mudam se esse ângulo for alterado.

Tabela de valores de seno, cosseno e tangente de ângulos notáveis

A tabela a seguir contém os valores de seno, cosseno e tangente dos ângulos mais importantes para esse conteúdo.

 

30°

45°

60°

Sen

1
2

√2
2

√3
2

cos

√3
2

√2
2

1
2

tg

√3

1

√3
3

 Tabela de valores das razões trigonométricas para ângulos notáveis

Essa tabela contém os valores do seno, cosseno e tangente dos ângulos 30°, 45° e 60°. Ela deve ser usada para descobrir um dos lados de um triângulo, conforme o exemplo a seguir:

Exemplo: determine o valor de x do seguinte triângulo:

Nesse triângulo, um ângulo tem 30°, o seu cateto oposto mede 10 cm e queremos descobrir a medida de seu cateto adjacente. A razão trigonométrica que usa o cateto oposto e o cateto adjacente é a tangente. Assim:

tg30° = 10
            x

A partir da tabela de valores dada acima, descobrimos que tg 30° = √3. Substituindo esse valor na razão da tangente, teremos:

√3 = 10
        x

x√3 = 10

x = 10
     √3

 

Racionalizando a fração, teremos:

 

x = 103
      3




Videoaulas relacionadas:

Seno, cosseno e tangente  são as razões trigonométricas relacionadas aos triângulos retângulos Seno, cosseno e tangente são as razões trigonométricas relacionadas aos triângulos retângulos
Por Luiz Paulo Moreira Silva

Você pode se interessar também

Matemática

Ângulo

Matemática

Razões trigonométricas

Matemática

Polígonos

Matemática

Classificação dos triângulos

Últimos artigos

Dízima periódica

Uma dízima periódica é um número que possui sua parte decimal infinita e periódica

Período Helenístico

Período Helenístico foi iniciado com a conquista da Grécia pelos macedônicos e ficou marcado pela difusão da cultura grega a partir do reinado de Alexandre, o Grande.

Império Carolíngio

Império Carolíngio foi a continuidade do Reino dos Francos sob o controle da Dinastia Carolíngia, iniciada por Pepino, o Breve em meados do século VII.

Civilização Micênica

Civilização Micênica foi uma das grandes civilizações do período de formação do povo grego, conhecida por suas grandes cidades fortificadas e pelo seu bom comércio.