Qual matéria está procurando ?

Matemática

Matemática

Polígonos semelhantes

Clique e descubra o que são polígonos semelhantes e saiba como determinar a semelhança entre dois polígonos.

Exemplos de polígonos que apresentam lados proporcionais e ângulos congruentes Exemplos de polígonos que apresentam lados proporcionais e ângulos congruentes

Um polígono é uma figura geométrica plana limitada por segmentos de reta, que são os lados. Além dos lados, também são elementos dos polígonos os ângulos internos, os ângulos externos, os vértices e as diagonais.

Dizemos que dois polígonos são semelhantes quando apresentam o mesmo número de lados, possuem ângulos internos correspondentes congruentes e, além disso, têm lados correspondentes proporcionais.

Em outras palavras, além de possuir o mesmo número de lados, e ângulos internos correspondentes com a mesma medida, as razões entre os lados correspondentes de dois polígonos precisam ser iguais para que eles sejam semelhantes.

Por exemplo, considerando os pentágonos abaixo, note que eles são semelhantes porque se enquadram na definição dada acima.

Os ângulos correspondentes dessas figuras são todos congruentes e a razão entre os lados correspondentes do maior para o menor é sempre ½.

Propriedades

A semelhança entre dois polígonos não é válida apenas para seus lados e ângulos. Ela também pode envolver seu perímetro. É isso o que garante a propriedade a seguir:

Dados dois polígonos semelhantes,

a razão entre seus perímetros é igual à razão entre

as medidas de dois lados semelhantes quaisquer.

Dessa forma, as medidas dos perímetros de dois polígonos semelhantes são proporcionais aos lados desses polígonos. Assim, dados os polígonos da imagem a seguir,

Perceba que, se esses polígonos são semelhantes, é possível escrever a seguinte proporção:

P(ABCDE) = AB
P(FGHIJ)     GF

Nessa proporção, P(x) é o perímetro do polígono x.

Semelhança de triângulos

Para descobrir se dois triângulos são semelhantes, não é necessário conferir todos os seus lados e ângulos. Isso acontece porque os triângulos são as figuras mais simples que existem, pois são aquelas que possuem o menor número de lados.

Para tanto, existem os casos de congruência de triângulos. São eles:

1 – Lado, lado, lado. Se os três lados correspondentes de dois triângulos distintos são proporcionais, então seus ângulos correspondentes serão congruentes.

2 – Ângulo, ângulo. Se dois ângulos correspondentes de dois triângulos distintos são congruentes, então eles são triângulos semelhantes.

3 – Lado, ângulo, lado. Se dois triângulos distintos possuem dois lados correspondentes congruentes e, além disso, o ângulo entre eles é congruente, então esses dois triângulos são semelhantes.




Aproveite para conferir nossa videoaula sobre o assunto:

Por Luiz Paulo Moreira Silva

Você pode se interessar também

Matemática

Conhecendo os Polígonos

Matemática

Estudo da Reta, Segmento de Reta e Semirreta

Matemática

Formas geométricas | Ensino Fundamental I

Matemática

Perímetro de um polígono

Últimos artigos

Crise de 1929

A Crise de 1929 foi a maior crise econômica da história dos Estados Unidos e do capitalismo. Foi iniciada pela quebra da Bolsa de Valores de Nova York.

Retângulo

O retângulo possui quatro lados e todos os ângulos internos medindo 90°. Essa forma geométrica está muito presente no cotidiano, como na face de caixas e nas paredes.

Paralelepípedo

O paralelepípedo é um sólido geométrico que possui todas as faces com paralelogramos. Essa forma pode ser percebida nos prédios e em caixas de sapatos.

Hiena

Hiena é um animal encontrado na África e na Ásia, bastante conhecido por seu hábito de se alimentar de carniça. Existem atualmente três espécies diferentes de hienas.