Soma dos ângulos internos de um triângulo

  • Atualmente 0/5 Estrelas.
  • 1
  • 2
  • 3
  • 4
  • 5
Soma dos ângulos internos de um triângulo A soma dos ângulos internos de um triângulo é sempre igual a 180°
Por Luiz Paulo Moreira Silva
PUBLICIDADE

Um triângulo é uma figura geométrica que possui três lados, três ângulos e três vértices. Os triângulos possuem diversas propriedades, uma delas diz respeito aos seus ângulos internos: independentemente das dimensões do triângulo, do seu formato, do comprimento de seus lados ou da medida de seus ângulos internos, a soma desses ângulos internos sempre será igual a 180°.

Em outras palavras, se ABC é um triângulo, e a, b e c são seus ângulos internos, como podemos exemplificar com a imagem a seguir:

Então, podemos escrever corretamente a soma:

a + b + c = 180°

Geralmente, essa igualdade não é usada para descobrir que a soma dos ângulos internos de um triângulo é igual a 180°, mas sim para determinar a medida de um dos ângulos internos de um triângulo, quando as medidas dos outros dois são conhecidas.

Exemplo: Qual a medida do terceiro ângulo interno de um triângulo que possui dois ângulos internos iguais a 30° e a 90°?

Solução:

30° + 90° + x = 180°
x = 180° – 30° – 90°
x = 60°

O terceiro ângulo mede 60°.

Demonstração

Considere o triângulo ABC, com ângulos a, b e c, como o da figura a seguir:

 

Construa sobre o ponto C uma reta paralela ao lado AB desse triângulo.

Reta paralela ao lado AB no triângulo ABC

Observe que os lados AC e BC podem ser encarados como retas transversais, que cortam as duas retas paralelas. Os ângulos x e y formados nessa construção são, respectivamente, alternos internos com os ângulos a e b. Assim, x = a e y = b.

Agora, note que a soma x + c + y = 180°, pois os três ângulos são adjacentes e seus limites são a reta paralela ao lado AB. Assim, substituindo os valores de x e y, teremos:

a + b + c = 180°

Exemplos:

1º Exemplo – Determine a medida de cada um dos três ângulos internos do triângulo a seguir.

Solução:

Sabendo que a soma dos ângulos internos de um triângulo é igual a 180°, basta fazer:

x + 2x + 3x = 180°
6x = 180°
x = 180°
     6
x = 30°

Como os ângulos internos são múltiplos de x, cada um deles mede:

x = 30°,
2x = 60° e
3x = 90°

2º Exemplo – Um triângulo tem um de seus ângulos internos com a medida exatamente igual ao triplo das medidas dos outros dois, que são congruentes. Quanto mede cada um dos ângulos internos desse triângulo?

Solução:

Para resolver esse problema, considere que os dois ângulos congruentes medem x e o outro ângulo mede 3x. Como a soma dos ângulos internos é igual a 180°, teremos:

x + x + 3x = 180°
5x = 180°
x = 180°
      5
x = 36°.

Como x é a medida dos dois ângulos congruentes, já sabemos que eles medem 36°. O terceiro ângulo é o triplo disso, portanto, mede:

3x = 3·36 = 108°

 

Avaliação

-

    Escola Kids